167 research outputs found

    Protégé: A Tool for Managing and Using Terminology in Radiology Applications

    Get PDF
    The development of standard terminologies such as RadLex is becoming important in radiology applications, such as structured reporting, teaching file authoring, report indexing, and text mining. The development and maintenance of these terminologies are challenging, however, because there are few specialized tools to help developers to browse, visualize, and edit large taxonomies. ProtĂ©gĂ© (http://protege.stanford.edu) is an open-source tool that allows developers to create and to manage terminologies and ontologies. It is more than a terminology-editing tool, as it also provides a platform for developers to use the terminologies in end-user applications. There are more than 70,000 registered users of ProtĂ©gĂ© who are using the system to manage terminologies and ontologies in many different domains. The RadLex project has recently adopted ProtĂ©gĂ© for managing its radiology terminology. ProtĂ©gĂ© provides several features particularly useful to managing radiology terminologies: an intuitive graphical user interface for navigating large taxonomies, visualization components for viewing complex term relationships, and a programming interface so developers can create terminology-driven radiology applications. In addition, ProtĂ©gĂ© has an extensible plug-in architecture, and its large user community has contributed a rich library of components and extensions that provide much additional useful functionalities. In this report, we describe ProtĂ©gé’s features and its particular advantages in the radiology domain in the creation, maintenance, and use of radiology terminology

    Facilitating the analysis of COVID-19 literature through a knowledge graph

    Get PDF
    At the end of 2019, Chinese authorities alerted the World Health Organization (WHO) of the outbreak of a new strain of the coronavirus, called SARS-CoV-2, which struck humanity by an unprecedented disaster a few months later. In response to this pandemic, a publicly available dataset was released on Kaggle which contained information of over 63,000 papers. In order to facilitate the analysis of this large mass of literature, we have created a knowledge graph based on this dataset. Within this knowledge graph, all information of the original dataset is linked together, which makes it easier to search for relevant information. The knowledge graph is also enriched with additional links to appropriate, already existing external resources. In this paper, we elaborate on the different steps performed to construct such a knowledge graph from structured documents. Moreover, we discuss, on a conceptual level, several possible applications and analyses that can be built on top of this knowledge graph. As such, we aim to provide a resource that allows people to more easily build applications that give more insights into the COVID-19 pandemic

    Pragmatic Ontology Evolution: Reconciling User Requirements and Application Performance

    Get PDF
    Increasingly, organizations are adopting ontologies to describe their large catalogues of items. These ontologies need to evolve regularly in response to changes in the domain and the emergence of new requirements. An important step of this process is the selection of candidate concepts to include in the new version of the ontology. This operation needs to take into account a variety of factors and in particular reconcile user requirements and application performance. Current ontology evolution methods focus either on ranking concepts according to their relevance or on preserving compatibility with existing applications. However, they do not take in consideration the impact of the ontology evolution process on the performance of computational tasks – e.g., in this work we focus on instance tagging, similarity computation, generation of recommendations, and data clustering. In this paper, we propose the Pragmatic Ontology Evolution (POE) framework, a novel approach for selecting from a group of candidates a set of concepts able to produce a new version of a given ontology that i) is consistent with the a set of user requirements (e.g., max number of concepts in the ontology), ii) is parametrised with respect to a number of dimensions (e.g., topological considerations), and iii) effectively supports relevant computational tasks. Our approach also supports users in navigating the space of possible solutions by showing how certain choices, such as limiting the number of concepts or privileging trendy concepts rather than historical ones, would reflect on the application performance. An evaluation of POE on the real-world scenario of the evolving Springer Nature taxonomy for editorial classification yielded excellent results, demonstrating a significant improvement over alternative approaches

    A Dynamic Knowledge Management Framework for the High Value Manufacturing Industry

    Get PDF
    Dynamic Knowledge Management (KM) is a combination of cultural and technological factors, including the cultural factors of people and their motivations, technological factors of content and infrastructure and, where these both come together, interface factors. In this paper a Dynamic KM framework is described in the context of employees being motivated to create profit for their company through product development in high value manufacturing. It is reported how the framework was discussed during a meeting of the collaborating company’s (BAE Systems) project stakeholders. Participants agreed the framework would have most benefit at the start of the product lifecycle before key decisions were made. The framework has been designed to support organisational learning and to reward employees that improve the position of the company in the market place

    Geospatial information infrastructures

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Geospatial information infrastructures (GIIs) provide the technological, semantic,organizationalandlegalstructurethatallowforthediscovery,sharing,and use of geospatial information (GI). In this chapter, we introduce the overall concept and surrounding notions such as geographic information systems (GIS) and spatial datainfrastructures(SDI).WeoutlinethehistoryofGIIsintermsoftheorganizational andtechnologicaldevelopmentsaswellasthecurrentstate-of-art,andreïŹ‚ectonsome of the central challenges and possible future trajectories. We focus on the tension betweenincreasedneedsforstandardizationandtheever-acceleratingtechnological changes. We conclude that GIIs evolved as a strong underpinning contribution to implementation of the Digital Earth vision. In the future, these infrastructures are challengedtobecomeïŹ‚exibleandrobustenoughtoabsorbandembracetechnological transformationsandtheaccompanyingsocietalandorganizationalimplications.With this contribution, we present the reader a comprehensive overview of the ïŹeld and a solid basis for reïŹ‚ections about future developments

    Answering biological questions: querying a systems biology database for nutrigenomics

    Get PDF
    The requirement of systems biology for connecting different levels of biological research leads directly to a need for integrating vast amounts of diverse information in general and of omics data in particular. The nutritional phenotype database addresses this challenge for nutrigenomics. A particularly urgent objective in coping with the data avalanche is making biologically meaningful information accessible to the researcher. This contribution describes how we intend to meet this objective with the nutritional phenotype database. We outline relevant parts of the system architecture, describe the kinds of data managed by it, and show how the system can support retrieval of biologically meaningful information by means of ontologies, full-text queries, and structured queries. Our contribution points out critical points, describes several technical hurdles. It demonstrates how pathway analysis can improve queries and comparisons for nutrition studies. Finally, three directions for future research are given
    • 

    corecore